
Smart Contract Code

Review And Security

Analysis Report

Customer: Archethic

Date: 12/07/2024

We express our gratitude to the Archethic team for the collaborative engagement that

enabled the execution of this Smart Contract Security Assessment.

Archethic (UCO) is a groundbreaking Layer 1 biometric blockchain with 11 revolutionary

patents, integrating blockchain and biometrics for unparalleled security and privacy. It

features a unique consensus algorithm and a patented biometric cold wallet, ensuring

unmatched security, scalability, and a seamless user experience. AeBridge is a pioneering

bridge solution that enables users to handle fund transfers between EVM and the Archethic

chain, enhancing interoperability and expanding the capabilities of the Archethic ecosystem.

Document

Name

Smart Contract Code Review and Security Analysis Report for

Archethic

Audited By Turgay Arda Usman, Grzegorz Trawiński

Approved By Ataberk Yavuzer

Website https://www.archethic.net

Changelog 04/07/2024 - Preliminary Report

12/07/2024 - Final Report

Platform Ethereum, Archetic, BSC, Polygon

Language Solidity

Tags Bridge, ERC20, Atomic Swap

Methodology https://hackenio.cc/sc_methodology

Review

Scope

Repository

https://github.com/archethic-foundation/bridge-

contracts/tree/11cf88221d00c9ea029ae5a4cf08f14705199ce1

Commit 11cf882

2

https://www.archethic.net/
https://hackenio.cc/sc_methodology
https://github.com/archethic-foundation/bridge-contracts/tree/11cf88221d00c9ea029ae5a4cf08f14705199ce1

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

9 7 2 0
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 1

High 0

Medium 2

Low 5

Vulnerability Status

F-2024-4134 - Missing Storage Gaps Accepted

F-2024-4145 - Solution is a subject to chain re-org Accepted

F-2024-4132 - Checks Effects Interactions Pattern Violation Fixed

F-2024-4137 - Reentrancy Leading to Signature Replay in Withdrawals Fixed

F-2024-4138 - Fee-on-Transfer Accounting-Related Issues Fixed

F-2024-4139 - Missing Funds Transfer In Contract Creation Fixed

F-2024-4140 - The provisionHTLC Function Can Be Front-Run Fixed

F-2024-4141 - The provisionHTLC Function Accepts Arbitrary Amount Fixed

F-2024-4142 - The mintHTLC Function Lacks Lockout Mechanism Fixed

Documentation quality

Functional requirements are partially provided.

Technical description is partially provided.

Code quality

The code mostly follows style guides and best practices.

See informational issues and observations for more details.

The development environment is configured.

Test coverage

3

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/3cbe3e0c-ba75-41a0-9796-9565c8c10d00
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/de21c8cb-1300-4039-9750-f284124f23f9
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/2d441acd-148b-4245-a3ce-749caa838286
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/4ce672f2-0a5c-43de-9996-c2ea456f1436
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/d43e7b7e-f8c8-4de3-bd42-26ad91958e3f
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/43154c42-1163-401b-bdfc-ba79de99c1fa
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/41718081-1194-4a6e-b4ad-579fc41764f2
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/0cdf8af9-b65c-46e6-8de0-9df90960cc4e
https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/2cddb259-7946-4042-9b3b-3272b78e524d

Code coverage of the project is around 73.08% (branch coverage).

4

Table of Contents

System Overview 6

Privileged Roles 6

Risks 7

Findings 8

Vulnerability Details 8

Observation Details 27

Disclaimers 31

Appendix 1. Severity Definitions 32

Appendix 2. Scope 33

System Overview

aeBridge is a p2p Bridge solution that aims its users to handle funds transfers between EVM

and Archethic chain. It has the following contracts:

HTLC_ERC — HTLC contract customized for ERC20 transfers.

PoolBase — Pool to manage assets for Archethic's bridge on EVM's side.

ETHPool — Pool to manage ETH asset for Archethic's bridge on EVM's side.

ERCPool — Pool to manage ERC assets for Archethic's bridge on EVM's side.

ChargeableHTLC_ERC — HTLC contract with chargeable fee towards pool's safety module.

ChargeableHTLC_ETH — HTLC contract with chargeable fee towards pool's safety module.

HTLCBase — base logic for HashTime-Lock Contract.

SignedHTLC_ERC — HTLC contract with signature verification before withdraw for ERC20

swap.

SignedHTLC_ETH — HTLC contract with signature verification before withdraw for ether

swap

Privileged roles

The owner of the BasePool can upgrade the contract, lock and unlock the contract, update

lock time period, and update Archetic Pool signer address.

Other contracts are permissionless.

6

Risks

The use of tx.origin to set the from address in the ChargeableHTLC_ERC constructor poses a

significant security risk, as it can expose the contract to phishing and reentrancy attacks.

Specifically, tx.origin refers to the original external account that initiated the transaction,

which can be manipulated in scenarios where multiple contracts interact. This can lead to

unauthorized actions if a malicious contract tricks a user into initiating a transaction,

causing tx.origin to be the user's address instead of the intended contract.

The audit does not cover all code in the repository. Contracts outside the audit scope may

introduce vulnerabilities, potentially impacting the overall security due to the

interconnected nature of smart contracts.

The functioning of the system significantly relies on specific external contracts. Any flaws

or vulnerabilities in these contracts adversely affect the audited project, potentially

leading to security breaches or loss of funds.

7

Findings

Vulnerability Details

F-2024-4140 - The provisionHTLC Function Can Be Front-Run -

Critical

Description: The solution is an atomic swap bridge between EVM and Archethic

blockchain. Whenever the swap is initiated on the Archethic side, the

peer on EVM side can proceed with swap by means of provisionHTLC

function. This function accepts the secret and signature generated

by the Archethic's smart contract. As a result, the function deploys

new instance of SignedHTLC_ETH contract with the purpose of one time

usage. This contract saves the information that msg.sender is the final

receipient of funds. The SignedHTLC_ETH instance receives the native

token from the ETHPool contract. The ETHPool is funded in advance by

the protocol owner.

In the next step the user can call the withdraw from the SignedHTLC_ETE

to receive the native token. To accomplish this, the another secret

and signature generated by the Archethic's smart contract must be

provided.

However, it was identified that the provisionHTLC function can be front-

runned by the attacker. The signature verified within this function

does not include e.g. msg.sender value. So, any user can call

provisionHTLC function, while having obtained the valid secret and

signature, e.g. from the mempool. Additionally, the Client's team

confirmed that on the Archethic's side the EVM's initiator address is

not being tracked and verified. Thus, the solution could generate

final artefacts required for withdraw function.

Apart from that, the provisionHTLC function can be front-runned by the

attacker to consume the secret and signature, preventing legitimate

user from finalising the swap.

function provisionHTLC(bytes32 _hash, uint256 _amount, uint _lockTime, bytes mem

 checkUnlocked();

 if (_hash == bytes32(0)) {

 revert InvalidHash();

 }

 if (_amount == 0) {

 revert InvalidAmount();

8

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/41718081-1194-4a6e-b4ad-579fc41764f2

 }

[...]

 if (_lockTime == 0 || _lockTime < block.timestamp || (_lockTime - block.t

 revert InvalidLockTime();

 }

 if(address(_refProvisionedSwaps[_hash]) != address(0)) {

 revert AlreadyProvisioned();

 }

 bytes32 _archethicHTLCAddressHash = sha256(_archethicHTLCAddress);

 bytes32 messagePayloadHash = keccak256(abi.encode(_archethicHTLCAddressHa

 bytes32 signedMessageHash = ECDSA.toEthSignedMessageHash(messagePayloadHa

 address signer = ECDSA.recover(signedMessageHash, _v, _r, _s);

 if (signer != archethicPoolSigner) {

 revert InvalidSignature();

 }

 delete signer;

 delete messagePayloadHash;

 delete signedMessageHash;

 IHTLC htlcContract = _createSignedHTLC(_hash, _amount, _lockTime);

 _refProvisionedSwaps[_hash] = htlcContract;

 _provisionedSwaps.push(address(htlcContract));

 setSwapByOwner(msg.sender, address(htlcContract), _archethicHTLCAddress,

 emit ContractProvisioned(htlcContract, _amount);

 }

Assets:

Pool/PoolBase.sol [https://github.com/archethic-foundation/bridge-

contracts/tree/main/evm]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Simple

9

Severity: Critical

Recommendations

Remediation: It is recommended to prevent the possibility of front-running and

sweeping the funds by the not legitimate user. It is recommended to

add recipient address to the signature verification. Additionally, it is

recommended to track and verify the EVM's initiator address on the

Archethic side.

Resolution: The msg.sender is now added to the signature and its verification

[commit ID: 074d3b14c8bd42f35b8d57e225bdd12b1d510a1c].

Evidences

Proof of Concept

Reproduce:

1. As a protocol owner, prepare and deploy the ETHPool contract.

Transfer native tokens to the ETHPool instance.

2. Simulate the swap transaction on the Archethic side and prepare

the secret and the signature.

3. As a user, attempt to execute a call to the provisionHTLC function

with correct input parameters.

4. As an attacker, observe the mempool. Note the transaction

triggered in step 3. Front-run the transaction as attacker.

5. Observe that front-runned transaction finished successfully. Note

that SignedHTLC_ETH instance has the receipient set to the

frontrunner address.

6. Observe the transaction triggered by the legitimated user

reverted with the AlreadyProvisioned error.

 it("Hacken: provisionHTLC can be front-runned by the malicious user", async

 const { pool, accounts, archPoolSigner } = await loadFixture(deployPool)

 await accounts[1].sendTransaction({

 to: pool.getAddress(),

 value: ethers.parseEther("2.0"),

 });

 const buffer = new ArrayBuffer(32);

 const view = new DataView(buffer);

 view.setUint32(0x0, networkConfig.chainId, true);

 const networkIdUint8Array = new Uint8Array(buffer).reverse();

 const archethicHtlcAddress = "00004970e9862b17e9b9441cdbe7bc13aeb4c906a75

10

 const archethicHtlcAddressHash = ethers.sha256(`0x${archethicHtlcAddress}

 const sigPayload = concatUint8Arrays([

 hexToUintArray(archethicHtlcAddressHash.slice(2)), // Archethic HTLC

 hexToUintArray("bd1eb30a0e6934af68c49d5dd5ad3e3c3d950ff977a730af56b55

 networkIdUint8Array

])

 const hashedSigPayload2 = hexToUintArray(ethers.keccak256(`0x${uintArrayT

 const signatur

See more

11

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/41718081-1194-4a6e-b4ad-579fc41764f2

F-2024-4138 - Fee-on-Transfer Accounting-Related Issues -

Medium

Description: The functions below transfer funds from the caller to the receiver via

safeTransfer() , but do not ensure that the actual number of tokens

received is the same as the input amount to the transfer. If the token

is a fee-on-transfer token, the balance after the transfer will be lower

than expected, leading to accounting issues. One way to address

this problem is to measure the balance before and after the transfer,

and use the difference as the amount, rather than the stated

amount.

function _transferAsWithdraw() internal override {

 ...

}

function _transferAsRefund() internal override {

 SafeERC20.safeTransfer(token, from, amount + fee);

}

function _transferAsWithdraw() internal override virtual {

 SafeERC20.safeTransfer(token, recipient, amount);

}

function _transferAsRefund() internal override virtual {

 SafeERC20.safeTransfer(token, from, amount);

}

Assets:

HTLC/ChargeableHTLC_ERC.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

HTLC/HTLC_ERC.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

12

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/d43e7b7e-f8c8-4de3-bd42-26ad91958e3f

Recommendations

Remediation: To mitigate potential vulnerabilities and ensure accurate accounting

with fee-on-transfer tokens, modify your contract's token transfer

logic to measure the recipient's balance before and after the

transfer. Use this observed difference as the actual transferred

amount for any further logic or calculations.

Resolution: The support for fee-on-transfer tokens is now disabled by enforcing

revert whenever fee was collected by the ERC20 token [commit ID:

8d5d72f546f34dbdde4762168fbdf3ce6f5465ed].

13

F-2024-4139 - Missing Funds Transfer In Contract Creation -

Medium

Description: The mintHTLC function in the ERCPool contract and its internal

_createChargeableHTLC method do not include a call to

token.safeTransferFrom . This omission means that when creating a new

ChargeableHTLC_ERC contract, the required ERC20 tokens are not

automatically transferred from the user's balance to the HTLC

contract. Consequently, the ChargeableHTLC_ERC contract must be

manually funded separately after its creation, leading to a potential

failure in automated workflows and an increased risk of user error.

function _createChargeableHTLC(bytes32 _hash, uint256 _amount, uint _lockTime) o

 uint256 _fee = swapFee(_amount, token.decimals());

 uint256 _recipientAmount = _amount - _fee;

 ChargeableHTLC_ERC htlcContract = new ChargeableHTLC_ERC(token, _recipientAmou

 return htlcContract;

}

In the current implementation, the mintHTLC function, or more

specifically, the _createChargeableHTLC function, creates a new

ChargeableHTLC_ERC contract without transferring the specified amount

of ERC20 tokens from the user's address. This is contrary to the

ETHPool implementation, where the required ether is sent within the

_createChargeableHTLC method. The lack of an automated transfer

mechanism for ERC20 tokens means that the new ChargeableHTLC_ERC

contracts must be funded manually. This discrepancy between the

handling of native coins and ERC20 tokens can cause the mintHTLC

process to fail unless the user manually transfers the tokens to the

HTLC contract.

Assets:

Pool/ERCPool.sol [https://github.com/archethic-foundation/bridge-

contracts/tree/main/evm]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Independent

14

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/43154c42-1163-401b-bdfc-ba79de99c1fa

Complexity: Simple

Severity: Medium

Recommendations

Remediation: To resolve this issue, incorporate a token.safeTransferFrom call in the

mintHTLC function or within the _createChargeableHTLC method. This will

ensure that the specified amount of ERC20 tokens is transferred from

the user's balance to the new HTLC contract automatically, mirroring

the behavior for native ether transfers.

Resolution: The _createChargeableHTLC function now implements the ERC20

transferFrom operation [commit ID:

b2c055020ab36a40ffebb7da2c8e4fffd1c704c4].

Evidences

Proof of Concept

Reproduce:

1. As a protocol owner, prepare and deploy the ERCPool contract.

2. As a user, execute call to the mintHTLC function with correct input

parameters.

3. Observe the transaction finished successfully and the

ChargeableHTLC_ERC contract is created. Note that no prior call for

token approval was required.

4. As a user, attempt to call the withdraw function with correct input

parameters. Observe the transaction reverts with the

InsufficientFunds error.

15

F-2024-4132 - Checks Effects Interactions Pattern Violation - Low

Description: It was identified that HTLCBase.sol contract has an instance of Checks-

Effects-Interactions (CEI) pattern violation, where state variables are

updated after the external calls to the token contract. As explained

in Solidity Security Considerations, it is best practice to follow the

CEI pattern while interacting with external contracts to avoid

reentrancy-related issues. One reentrancy vulnerability was

identified during the security assessment, however it is impractical,

as contracts are meant to be one-time use. The finding is reported

as a deviation from leading security practices.

function _withdraw(bytes32 _secret) internal {

 if (status != HTLCStatus.PENDING) {

 revert AlreadyWithdrawn();

 }

 if (sha256(abi.encodePacked(_secret)) != hash) {

 revert InvalidSecret();

 }

 if (!_enoughFunds()) {

 revert InsufficientFunds();

 }

 secret = _secret;

 _transferAsWithdraw();

 status = HTLCStatus.WITHDRAWN;

 emit Withdrawn();

}

...

function _refund() internal {

 if (status != HTLCStatus.PENDING) {

 revert AlreadyRefunded();

 }

 if (!_enoughFunds()) {

 revert InsufficientFunds();

 }

 _transferAsRefund();

 status = HTLCStatus.REFUNDED;

 emit Refunded();

 }

Assets:

HTLC/HTLCBase.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

16

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/2d441acd-148b-4245-a3ce-749caa838286
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations

Status: Fixed

Classification

Impact: 2/5

Likelihood: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation:

It is recommended to follow the CEI pattern when interacting

with external contracts.

It is recommended to use reentrancy locks.

Resolution: The _withdraw and _refund functions now implement CEI pattern

[commit ID: c350ca9d70ab4b68e5e2dec5e9178aa652fcac9a].

17

F-2024-4134 - Missing Storage Gaps - Low

Description: When working with upgradeable contracts, it is necessary to

introduce storage gaps to allow for storage extension during

upgrades.

Storage gaps are a convention for reserving storage slots in a base

contract, allowing future versions of that contract to use up those

slots without affecting the storage layout of child contracts.

The affected contract(s): PoolBase.sol

Note: OpenZeppelin Upgrades checks the correct usage of storage

gaps.

Assets:

Pool/PoolBase.sol [https://github.com/archethic-foundation/bridge-

contracts/tree/main/evm]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Introduce Storage Gaps in the affected contracts.

To create a storage gap, declare a fixed-size array in the base

contract with an initial number of slots. This can be an array of

uint256 so that each element reserves a 32 byte slot. Use the name

__gap or a name starting with __gap_ for the array so that

OpenZeppelin Upgrades will recognize the gap.

To help determine the proper storage gap size in the new version of

your contract, you can simply attempt an upgrade using upgradeProxy

or just run the validations with validateUpgrade (see docs for Hardhat

or Truffle). If a storage gap is not being reduced properly, you will

18

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/3cbe3e0c-ba75-41a0-9796-9565c8c10d00
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-hardhat-upgrades
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-truffle-upgrades

see an error message indicating the expected size of the storage

gap.

Resolution: The Client's team confirmed issue and plan to implement a fix in a

next version

19

F-2024-4141 - The provisionHTLC Function Accepts Arbitrary

Amount - Low

Description: The solution is an atomic swap bridge between EVM and Archethic

blockchain. Whenever the swap is initiated on the Archethic side, the

peer on EVM side can proceed with swap by means of provisionHTLC

function. This function accepts the secret and signature generated

by the Archethic's smart contract. Additionally, this function accepts

the _amount input parameter to define an amount of native tokens to

be given to the EVM peer. However, this input parameter is not

included in the signature verification, thus, any amount can be

provided, e.g. the whole balance of ETHPool .

The Client's team confirmed that on the Archethic's side the amount

parameter is verified, thus manipulation of the native tokens to be

transferred is mitigated. Nevertheless, this approach appears to be

single point of failure and it is considered a deviation from the

leading security practices.

function provisionHTLC(bytes32 _hash, uint256 _amount, uint _lockTime, bytes mem

 checkUnlocked();

 if (_hash == bytes32(0)) {

 revert InvalidHash();

 }

 if (_amount == 0) {

 revert InvalidAmount();

 }

[...]

 bytes32 _archethicHTLCAddressHash = sha256(_archethicHTLCAddress);

 bytes32 messagePayloadHash = keccak256(abi.encode(_archethicHTLCAddressHa

 bytes32 signedMessageHash = ECDSA.toEthSignedMessageHash(messagePayloadHa

 address signer = ECDSA.recover(signedMessageHash, _v, _r, _s);

 if (signer != archethicPoolSigner) {

 revert InvalidSignature();

 }

[...]

 }

Assets:

Pool/PoolBase.sol [https://github.com/archethic-foundation/bridge-

contracts/tree/main/evm]

20

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/0cdf8af9-b65c-46e6-8de0-9df90960cc4e

Status: Fixed

Classification

Impact: 5/5

Likelihood: 1/5

Exploitability: Semi-Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to include the _amount input parameter in the

signature verification check to prevent any possibility of

manipulation and undesired transfer of excessive amount of funds.

Resolution: The _amount is now included in the signature and its verification

[commit ID: ebf2d4714a11eaffc28abadf0d751e15feca7be1].

21

F-2024-4142 - The mintHTLC Function Lacks Lockout Mechanism -

Low

Description: The PoolBase contract allows user to either begin swap procedure by

means of the mintedSwaps or continue swap initiated on the Archethic

side by means of the provisionHTLC . The provisionHTLC function is

protected with the checkUnlocked function, whereas mintHTLC is not. The

checkUnlocked acts as pausability pattern implementation.

This disparity pose a risk that in the event of emergency the

provisionHTLC is protected, but mintHTLC is not, thus, a swap can be

triggered at any time on the EVM side.

 function provisionHTLC(bytes32 _hash, uint256 _amount, uint _lockTime, bytes

 checkUnlocked();

 if (_hash == bytes32(0)) {

 revert InvalidHash();

 }

 [...]

 function mintHTLC(bytes32 _hash, uint256 _amount) payable virtual external {

 if (_hash == bytes32(0)) {

 revert InvalidHash();

 }

 if (_amount == 0) {

 revert InvalidAmount();

 }

 _mintHTLC(_hash, _amount, _chargeableHTLCLockTime());

 }

 [...]

 function checkUnlocked() internal view {

 require(!locked, "Locked");

 }

 [...]

 function unlock() virtual external {

 _checkOwner();

 locked = false;

 emit Unlock();

 }

 [...]

 function lock() virtual external {

 _checkOwner();

 locked = true;

22

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/2cddb259-7946-4042-9b3b-3272b78e524d

 emit Lock();

 }

Assets:

Pool/PoolBase.sol [https://github.com/archethic-foundation/bridge-

contracts/tree/main/evm]

Status: Fixed

Classification

Impact: 2/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to add checkUnlocked check to the mintHTLC function.

Resolution: The checkUnlocked is now implemented for both mintHTLC and

provisionHTLC functions [commit ID:

4dec7491587d14022c215c35005c34c0733b719e] .

23

F-2024-4145 - Solution is a subject to chain re-org - Low

Description: The solution is supposed to be an atomic-swap bridge. Thus, no

latency of the tokens transfers is a main priority. However, this

property makes the solution vulnerable to chain re-org. Within the

code, no assertions were identified that checks whether a certain

number of blocks passed to allow fulfil transfer.

This creates a risk when a swap is finalised on one chain, but

reverted on the other due to chain re-org event.

Status: Accepted

Classification

Impact: 5/5

Likelihood: 1/5

Exploitability: Dependent

Complexity: Medium

Severity: Low

Recommendations

Remediation: It is recommended to consider chain re-org risk and apply security

controls to prevent occurrence of one-side swap:

Delay funds transfer on EVM side after certain number of blocks

passed.

Delay funds transfer on Archethic side after certain number of

blocks passed.

Whenever RPC API is in use, ensure it fetches data only fo

finalised blocks.

Resolution: The Client's team is aware about the risk and accepted it.

24

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/de21c8cb-1300-4039-9750-f284124f23f9

F-2024-4137 - Reentrancy Leading to Signature Replay in

Withdrawals - Info

Description: A signature replay attack occurs when an attacker reuses a valid

signature to perform unauthorized transactions multiple times. In the

context of the ChargeableHTLC_ERC smart contract, the withdraw function

could be vulnerable to such an attack if the contract's state is not

properly updated before performing external calls.

The withdraw function in the ChargeableHTLC_ERC contract verifies a

signature before allowing the withdrawal of tokens. This signature is

derived from the hash , ensuring that only a valid signer can authorize

withdrawals. However, a critical vulnerability exists in the _withdraw

function's state update order. The function first performs the token

transfer via the _transferAsWithdraw call and only afterward updates the

contract's state by setting status to WITHDRAWN and secret to the

provided _secret .

function withdraw(bytes32 _secret, bytes32 _r, bytes32 _s, uint8 _v) external {

 if (!_beforeLockTime(block.timestamp)) {

 revert TooLate();

 }

 bytes32 sigHash = ECDSA.toEthSignedMessageHash(hash);

 address signer = ECDSA.recover(sigHash, _v, _r, _s);

 if (signer != poolSigner) {

 revert InvalidSignature();

 }

 delete sigHash;

 delete signer;

 _withdraw(_secret);

}

function _withdraw(bytes32 _secret) internal {

 if (status != HTLCStatus.PENDING) {

 revert AlreadyWithdrawn();

 }

 if (sha256(abi.encodePacked(_secret)) != hash) {

 revert InvalidSecret();

 }

 if (!_enoughFunds()) {

 revert InsufficientFunds();

 }

 secret = _secret;

 _transferAsWithdraw();

 status = HTLCStatus.WITHDRAWN;

25

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/4ce672f2-0a5c-43de-9996-c2ea456f1436

 emit Withdrawn();

}

This order of operations can lead to a re-entrancy attack. In a re-

entrancy attack, an attacker could exploit the external call within

_transferAsWithdraw to re-enter the withdraw function before the state has

been updated. Since the state remains PENDING until after the external

call, the attacker can repeatedly call withdraw with the same valid

signature and secret, enabling multiple unauthorized withdrawals.

This oversight can lead to significant financial loss as the attacker

can drain the contract's funds by executing the attack. Since in the

first withdrawal the contract distributes all its funds, the impact is

reduced.

Assets:

HTLC/SignedHTLC_ETH.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

Status: Fixed

Classification

Impact: 1/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

Remediation:

Implement reentrancy guards.

Update the contract state before making any external calls to

follow the Checks-Effects-Interactions pattern.

Resolution: The _withdraw and _refund functions now implement CEI pattern

[commit ID: c350ca9d70ab4b68e5e2dec5e9178aa652fcac9a].

26

Observation Details

F-2024-4131 - Missing Zero Address Validation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the “zero

address”. This address has significance because it is the default

value for uninitialized address variables and is often used to

represent an invalid or non-existent address.

The "Missing zero address Validation" issue arises when a

Solidity smart contract does not properly check or prevent

interactions with the zero address, leading to unintended behavior.

For instance, consider a contract that includes a function to change

its owner. This function is crucial, as it determines who has

administrative access. However, if this function lacks proper

validation checks, it might inadvertently permit the setting of the

owner to the zero address. Consequently, the administrative

functions will become unusable.

Missing checks were observed in the following functions:

_createSignedHTLC()

initialize()

setToken()

constructor()

Assets:

HTLC/ChargeableHTLC_ERC.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

HTLC/ChargeableHTLC_ETH.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

HTLC/HTLC_ERC.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

HTLC/SignedHTLC_ERC.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

HTLC/SignedHTLC_ETH.sol [https://github.com/archethic-

foundation/bridge-contracts/tree/main/evm]

Status: Fixed

Recommendations

Remediation: Implement zero address checks for the aforementioned functions.

27

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/c240b79b-3135-4139-a46c-a8afe57f1908

Resolution: The zero address checks for the aforementioned functions are now

implemented [commit ID:

7ae328681315d3730e85280b5d6d3d189c88c540].

28

F-2024-4144 - Protocol is not compliant with the EIP-712 - Info

Description: The protocol uses signature based authorisation in following

functions: provisionHTLC (PoolBase) and withdraw (SignedHTLC_ETH ,

SignedHTLC_ERC , ChargeableHTLC_ETH , ChargeableHTLC_ERC).

function provisionHTLC(bytes32 _hash, uint256 _amount, uint _lockTime, bytes mem

[...]

 bytes32 _archethicHTLCAddressHash = sha256(_archethicHTLCAddress);

 bytes32 messagePayloadHash = keccak256(abi.encode(_archethicHTLCAddressHa

 bytes32 signedMessageHash = ECDSA.toEthSignedMessageHash(messagePayloadHa

 address signer = ECDSA.recover(signedMessageHash, _v, _r, _s);

 if (signer != archethicPoolSigner) {

 revert InvalidSignature();

 }

[...]

 function withdraw(bytes32 _secret, bytes32 _r, bytes32 _s, uint8 _v) overrid

 bytes32 sigHash = ECDSA.toEthSignedMessageHash(_secret);

 address signer = ECDSA.recover(sigHash, _v, _r, _s);

[...]

 if (signer != poolSigner) {

 revert InvalidSignature();

 }

[...]

In the first instance, for the signature verification a hash of

_archethicHTLCAddressHash , block.chainid and secret is created. In the

second instance only the secret is taken into account.

Thus, such implementation is not compliant with the EIP-712: Typed

structured data hashing and signing. The EIP-712 assumes that the

hash compared with the signature should include a domain

separator, created with:

name

version

blochain ID

contract's address

Lack of compliance may lead to signature replay in other smart

contracts and blockchains. It is also considered a deviation from

leading security practices.

Status: Accepted

29

https://portal.hacken.io/App/Projects/Details/0992db1b-66c3-4ab5-bf5e-c8a2aa30a5b5/Finding/12e229b8-5ad6-470e-adbe-1af9e5510315
https://eips.ethereum.org/EIPS/eip-712

Recommendations

Remediation: It is recommended to implement signature based authorisation

compliant with the EIP-712 standard.

Resolution: The Client's team accepted the finding.

30

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

31

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution, do not affect security score but

can affect code quality score.

32

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository
https://github.com/archethic-foundation/bridge-

contracts/tree/11cf88221d00c9ea029ae5a4cf08f14705199ce1

Commit 11cf882

Whitepaper https://wiki.archethic.net/participate/bridge/

Requirements
https://github.com/archethic-foundation/bridge-

contracts/blob/11cf88221d00c9ea029ae5a4cf08f14705199ce1/README.md

Technical

Requirements

https://github.com/archethic-foundation/bridge-

contracts/blob/11cf88221d00c9ea029ae5a4cf08f14705199ce1/README.md

Contracts in Scope

HTLC/ChargeableHTLC_ERC.sol

HTLC/ChargeableHTLC_ETH.sol

HTLC/HTLC_ERC.sol

HTLC/HTLC_ETH.sol

HTLC/HTLCBase.sol

HTLC/SignedHTLC_ERC.sol

HTLC/SignedHTLC_ETH.sol

Pool/ETHPool.sol

Pool/ERCPool.sol

Pool/PoolBase.sol

interfaces/IHTLC.sol

interfaces/IPool.sol

Contract Address

Pool/ERCPool.sol (Ethereum) 0x346Dba8b51485FfBd4b07B0BCb84F48117751AD9

Pool/ERCPool.sol (Polygon) 0xd5cA9F76495b853a5054814A10b6365ee8ed745B

Pool/ERCPool.sol (BSC) 0xE01F0ee653648192812B2D23CBfe7E147727B672

33

https://github.com/archethic-foundation/bridge-contracts/tree/11cf88221d00c9ea029ae5a4cf08f14705199ce1
https://github.com/archethic-foundation/bridge-contracts/commit/11cf88221d00c9ea029ae5a4cf08f14705199ce1
https://wiki.archethic.net/participate/bridge/
https://github.com/archethic-foundation/bridge-contracts/blob/11cf88221d00c9ea029ae5a4cf08f14705199ce1/README.md
https://github.com/archethic-foundation/bridge-contracts/blob/11cf88221d00c9ea029ae5a4cf08f14705199ce1/README.md

